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Abstract
The area under the plasma drug concentration-time curve (AUC), 
representing the total drug exposure over time, is a common pharmacokinetic 
(PK) surrogate to inform the issue of therapy. Reliability of its estimation 
highly depends on the frequency of blood sampling. To reduce the cost 
and inconvenience of blood withdrawal, limited sampling strategies (LSS) 
have been proposed, with two main approaches for their development 
and implementation, whether the multiple linear regression-based LSS 
(R-LSS) or the Bayesian-based LSS (B-LSS). Regardless of the method used, 
evaluation of the predictive capacity of LSS is critical. Transferring an LSS 
between different clinical settings is an overlooked aspect, threatening 
thus the extension of its informed use. In the current paper, we study 
the reliability of a chosen LSS by proposing a hybrid approach that takes 
advantage of both R-LSS and B-LSS to analyze its robustness and success 
rate. The impact of variability on the LSS reliability is also investigated. As 
a result, we were able to show that our method enhances the selection of 
the best LSS and informs the associated risk to their transferability. This 
simulation-based methodology should be added to routine procedures of 
LSS development to complement traditional validations.

Keywords: Limited sampling strategies; Area under the curve; Multiple 
linear regression; Bayesian; Robustness; Transferability

Introduction
Therapeutic drug monitoring (TDM) is a routine clinical practice for 
drugs exhibiting significant inter- and intra- individual variability 
and narrow therapeutic ranges [1]. To optimize treatment 
efficacy and minimize toxicity, appropriate blood samples are 
collected for the estimation of therapeutic surrogates. The 
area under the plasma drug concentration-time curve (AUC) is 
a typical example [1-4]. Many methods have been proposed to 
estimate AUC. However, to be reliable, a rich number of samples 
on individuals is usually needed for the use of these methods 
[5]. In order to alleviate the associated burden of frequent blood 
withdrawal, limited sampling strategies (LSS), generally using 3 or 
less blood samples while keeping reasonable estimation accuracy 
were proposed and applied in clinical practice [6-9]. Two usual 
LSS approaches, the multiple linear regression (R-LSS) and the 
population pharmacokinetic (Pop-PK) model based empirical 

Bayesian (B-LSS), are equally used for the estimation of AUC [10-
12]. In the development of these LSS approaches, a reference 
dataset of dense sampling, with 6 to 10 blood samples of each 
individual, is usually provided [13]. Using the trapezoidal method, 
individual AUC is estimated and set as the reference AUC (AUCref). 
For R-LSS, different subsets of blood samples are tested using 
multilinear regression method with AUCref, and those with the 
closest predicted values to AUCref are identified. Noted as 

AUC
, this prediction is expressed as



0 1 1 2 2AUC ... k ka a c a c a c= + + + 		                                (1)

where Ci are concentrations sampled at the chosen times ti, and 
ai are the associated regression coefficients, i = 0, . . . k. For its 
simplicity, R-LSS is a much appreciated methodology. However, its 
use is highly restrictive since samples are assumed to strictly follow 
the protocol nominal sampling times, a hypothesis thus excluding 
any possible time deviations [10-12]. For B-LSS, a well-established 
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Pop-PK model is additionally required for the estimation of AUC. 
This model, considered as the prior acquired knowledge of drug 
characteristics, helps to improve the estimation, otherwise 
solely based on the observed drug concentrations. With the 
B-LSS method, the individual PK parameters are estimated 
using the empirical Bayesian approach, then used to predict 
the individual’s drug concentrations and, consequently, the 
AUC [14]. One advantage of B-LSS over R-LSS is its flexibility in 
terms of sampling time deviations which are implicitly included 
in the framework of the Pop-PK modeling and the estimation of 
individual PK parameters. Nevertheless, the use of B-LSS can be 
hampered by the need for trained professionals and specialized 
software. This situation is however progressively changing since 
many PK software packages with user-friendly interfaces are now 
made available [8,11,12,15,16]. The predictive performance of 
LSS is generally evaluated through the calculation of their bias 
and precision [17]. Though these criteria inform a certain validity 
of the LSS, their predictive power and transferability should not 
be taken for granted when different patient subpopulations and 
contexts are involved [18]. This fact explains the variety of LSS 
reported for the same drug by different research groups [9,19]. 
When a specific LSS is intended to be used in a clinical setting or a 
population different from the one for which it has been originally 
established, the degree of its transferability or reproducibility 
should be of concern [9,20]. Traditionally, this was assessed 
clinically through a revalidation process using additional sub-
population data [21]. However, running a separate clinical trial for 
each subpopulation can be unrealistic and even at a large risk of 
validation failure. To reduce this risk, a modeling-based approach 
using simulated data is a reasonable choice. We will refer to 
this transferability to indicate the reliability of a chosen LSS in 
different settings [9,16,22-24], which includes the robustness 
and the success rates as will be discussed in the current paper. 
By taking advantage of both R-LSS and B-LSS, we propose here a 
hybrid approach to measure the robustness of LSS with respect 
to the so-called between subject variability (BSV) and the residual 
variability (RV). Based on this, we will also propose several ways 
to assess the risk of an identified LSS. The current work concerns 
the methodology to evaluate the transferability of LSS, which is 
simulation based. The drug model is chosen from the literature 
and only used for an illustrative purpose. Therefore, the method 
we propose here can be easily applied to any drug scenarios with 
similar needs.

Materials and Methods
Since our methodology is based on simulated data, a published 
Pop-PK model of cyclosporine (CsA) in clinical renal transplant 
patients [25] is chosen to illustrate our proposed evaluation 
procedure of LSS. First, using this model, a full sampling data 
set will be generated to serve the estimation of AUCref. Then, 
different subsets of blood sampling with all possible combinations 
containing three time points are used to find the most performing 
LSS in terms of the closeness of their prediction of AUC to AUCref. 
Once this selection is done, we will propose a simulation process 
for the assessment of their robustness. An analysis of the LSS 
robustness in the context of various variability will be investigated 

as well. Moreover, the problem of how to assess the risk of an 
LSS in different settings, referred to here as the LSS success rates, 
will be discussed. These involved steps will be explained in more 
details below.

The Pop-PK model 
A one-compartment Pop-PK model with first-order elimination 
and absorption rate for cy-closporine (CsA) is chosen to illustrate 
our proposed approach [25]. Typical values of model parameters 
are used in this paper and summarized in Table 1.

In this model, BSV for PK parameters is described with the 
exponential model:

ij
ij je

ηθ θ= 	 	 	 	 	                 (2)

Where θij is the jth PK parameter for the ith individual, θj is the 
typical value of the parameter, ηij is a random variable assumed 
to be normally distributed with zero mean and variance ω2. The 
unexplained variability RV is described using the additive and 
proportional model

( ) 1 2   1    obs predC C ε ε= × + + 	                                                                (3)

Where, Cobs and Cpred are the observed and predicted values of 
blood concentrations, respectively;

ε1 and ε2 are normally distributed random variables with zero 
mean and variances σ1

2 and σ2
2, respectively. For the sake of 

simplicity, we take in this paper BSV as the average of η of the PK 
parameters and RV as the value of ε1, since the impact of ε2 on the 
estimation of AUC is very small.

Simulated dataset of full sampling concentrations and the 
estimation of AUCref

Using the above Pop-PK model, 100 full sampling concentration 
datasets, with 60 subjects in each, were simulated. Using a 
previously reported protocol [11], 12 sampling points are chosen:

0, 0.5, 1, 1.5, 2, 3, 4, 8, 12, 15, 22 and 24 hours post dose. Using 
the trapezoidal method, AUCref was estimated for each of these 
full sampling dataset.

Identification of LSS

A number of 220 possible LSS, which are the combination results 

Parameter Estimate Unit
V 133 (L)
CL 28.5 (L/h)
KA 1.28 (h−1)

BSV(C V %) - -
η

V 25% -
η

C L 25% -
ηKA 25% -

Residual error - -

ε1 30% -

ε2 0.3 (ng/mL)

V: apparent volume of distribution; C L: clearance; KA: first order 
constant of absorption

Table 1: The one compartmental Pop-PK model for illustration. 
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from three concentration-time points, were evaluated for their 
performance. For each dataset k, we performed a multiple linear 
regression in terms of the chosen combination of (C1, C2, C3) and 
AUCref to determine the corresponding coefficients (a1, a2, a3), 
which leads to the prediction of AUCref, AUC  :


0 1 1 2 2 3 3 AUC a a C a C a C= + + + 	      		                 (4)

The performance of the 220 LSS was evaluated using the 95th 
percentile of the absolute values of relative prediction errors (95th 

PAE%) [11,12]. For the given dataset k and the combination m, 

the relative error Ei, i = 1 • • • , 60, are calculated as

	 	 	 	 	 	                 (5)

Where AUCref,i and  iAUC are AUCref and AUC  for ith individual, 
respectively. Then, 95th PAE% is estimated using the following 
formula 

95th PAE% = 95th percentile of the increasingly ordered set of {| E |}i.               (6)

For each dataset k, the best N LSS among the 220 combinations 
in terms of 95th PAE% values are kept as appropriate candidates 
for AUC estimation. In the current paper, we considered the 
cases of N = 1 or N = 5.

Accordingly, for 100 simulated datasets, we thus have a list of 
100 or 500 LSS that can be considered as the most promising 
LSS for the estimation of AUC. This list will be used to assess 
an LSS.

Reliability assessment of LSS
Using the above list, we can investigate the robustness of an 
LSS, and assess the risk of its use as well. We propose the 
following metrics for their estimations.

• Robustness: For an identified LSS in the list, its robustness 
refers to its frequency within the list. This can be explained by 
the fact that when an LSS appears the most in the identification 
process, it is the one which is likely to perform always the best, 
thus can be considered as the most robust. 

• Absolute success rate: Given a 95th PAE% threshold Θ, for 
example 15% in the current paper, we can measure the rate that 
an identified LSS has 95th PAE% smaller than Θ within the 100 
simulated datasets. Mathematically, the absolute success rate of 
an LSS is given by

Absolute success rate = #{95th PAE%(LSS) < Θ}/100	                (7)

Where # is the number of occurrences. This rate can be interpreted 
as the confidence that one can have in an identified LSS to reach 
the expected accuracy when applied in a new setting.

• Relative success rate: We can also measure the rate that an 
identified LSS has the best performance compared to other LSS 
within the 100 datasets. For an identified best LSSI, its relative 
success rate compared to another LSSJ can be defined as

Relative success rate = #{k : 95th PAE%(LSSJ ) - 95th PAE% (LSSI ) > 0}/100	 8)

Where # is the number of occurrences.

Analysis of LSS robustness for various variability

A different variability in PK parameters may change the predictive 
performance of an LSS. Hence we also estimate here the impact 
of the BSV and RV on the robustness of LSS. This allows a different 
angle of view to understand the risk of uncertainty of an LSS.

Three levels (small, medium, high) of BSV and RV are tested. 
For BSV, the small, medium and high variability are 0-20%, 20-
50% and 50-80%, respectively. For RV, three levels of 0-10%, 15-
20% and 30-60% are used for the proportional component, and 
three levels of 0-0.1, 0.1-0.2 and 0.2-0.6 (ng/mL) for the additive 
component.

Software
The commercial software package MATLAB (2008b, The Math 
Works Inc, Natick, Massachusetts, USA) and NONMEM (version 
VII, Icon Development Solutions, Ellicott City, MD) were used for 
calculations and simulations.

Results
Robustness of the LSS 
In the left panel of Figure 1, we display, in a 2-D contour plot 
heat map style, the LSS robustness in terms of different BSV and 
RV values. Figure 1A shows the robustness of the best (most 
frequent) LSS for N = 1. It can be observed that the robustness 
is very low even when BSV and RV values are very small, which 
makes the decision difficult regarding the appropriateness of 
these best LSS.

However, when N = 5, we have a larger list of LSS (500), from 
which a best LSS can be identified for each value of BSV and RV. It 
can be observed that there is a significant increase in robustness, 
as seen in figure 1B, making this situation more appealing. This 
increase is not homogeneous in terms of BSV and RV. For example, 
for medium variability as with BSV = 30% and RV = 20%, where 
the identified LSS is 172 (t1 = 2h, t2 = 4h, t3 = 12h), its robustness is 
less than 50%. Nonetheless, when BSV is small (< 20%), we always 
have a high robustness (> 60%), regardless of RV. The estimation 
error of those LSS should be clinically acceptable. Figure 1C and 
D, represents the maximum estimation error for the best LSS, for 
N = 1 and N = 5, respectively. Contrarily to the robustness, there 
is no significant difference in the estimation error for the best LSS 
when small variability is present, as indicated in the lower left 
square of Figure 1C and D.

Absolute success rate
In Figure 2, the left panel shows the robustness of LSS in a 
decreasing order, for three levels of BSV and RV, the middle 
panel displays the 95th PAE% of the most robust LSS of each level, 
compared to a threshold Θ = 15%, for 100 simulations or clinical 
settings. For BSV = 5% and RV = 10%, the most robust LSS noted 186 
(t1 = 3h, t2 = 4h, t3 = 8h) has a robustness larger than 80 % and a 
full absolute success rate of 100%. Hence for a threshold of 15%, 
the LSS186 can be safely transferred to another setting. However, 
for BSV = 35% and RV = 20%, the most robust LSS, LSS172 (t1 = 2h, 
t2 = 4h, t3 = 12h), has a robustness of 49% and an absolute success 


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Figure 1 Robustness and maximum 95
th
P AE%. PAE-percentile absolute error; RV-residual variability; BSV-between subject  variability.

Figure 2 Robustness, 95
th
P AE% and relative success rate of the best LSS. PAE, percentile absolute error; RV, residual variability; BSV, 

between subject variability.
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rate of 23%, making it more susceptible to errors when applied in 
different clinical conditions. Finally, for an extreme case of BSV = 40% 
and RV = 60%, LSS186 is again the most robust, with more than 60% 
of robustness but has null absolute success rate of 0%. If threshold 
of Θ = 20% is clinically acceptable, our conclusion for the LSS172 can 
be changed, with a success rate of 95%, which may be acceptable. 
However, the conclusion for the third case remains unchanged.

Relative success rate
The right panel of Figure 2 shows the relative success rate of each 
of the most robust LSS of the left panel. In all cases, this success 
rate is higher than 50%. For BSV = 5% and RV = 10%, the most 
robust LSS noted 186 (t1 = 3h, t2 = 4h, t3 = 8h) has a relative success 
rate of 60% and up, which supports its superiority as previously 
indicated. For the case of BSV = 40% and RV = 60%, LSS186 still 

Figure 3 Robustness vs. BSV for different RV. RV, residual variability; BSV, between subject variability.

Figure 4 Robustness vs. BSV/RV for different RV. RV, residual variability; BSV, between subject variability.
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distinguishes itself among the other LSS, though its absolute 
success rate makes it useless (the less worst). In the middle case 
of BSV = 35% and RV = 20%, we can see that LSS172, has 53% of 
relative success rate compared to its nearest competitor LSS173 (t1 
= 2 h, t2 = 4 h, t3 = 15 h), making them almost equal in this aspect. 
However, the absolute success rate of LSS173 is 20%, which is not 
far away from the one of LSS172 which is 23%. In this case LSS173 
can be considered as an alternative for LSS172.

Impact of different variability on the robustness 
of LSS
Figure 3 and 4 display the robustness of best LSS in terms of 
BSV and BSV/RV, for increasing levels of RV. The results of Figure 
3 show that, for any BSV, the robustness decreases with the 
increase in RV. However, for a fixed RV, the robustness decrease 
first when BSV increases, but then the trend is reversed at some 
point. We think this could be attributed to the different intrinsic 
natures of BSV and RV, while the former can be explained by the 
PK heterogeneity of the population and can be predicted by the 
Pop-PK model, while the latter refers to the unexplained part of 
the variability as a white noise of the model. Figure 4 informs 
further by linking the ratio of BSV and RV to the robustness in 
presence of variability. We can see that, for all RV tested, the 
variation of robustness are almost in the same range and the 
mentioned trend changes around the point where BSV is almost 
double of RV.

Discussion
Limited sampling strategies have been proposed to reduce the 
invasiveness of therapeutic drug monitoring for drugs having 
large variability and narrow therapeutic ranges. A large number 
of studies have been performed for the selection of best LSS using 
data collected in a particular clinical setting. Many LSS have been 
identified to encompass a variety of compounds and populations. 
At the same time, new methodologies have been proposed; 
mainly using the multilinear regression or Pop-PK based empirical 
Bayesian approaches. Beyond the LSS selection, additional 

aspects have recently been addressed, such as the impact of 
sampling time deviation on the prediction performance of LSS 
[12]. The LSS validation is an important issue. Many methods have 
been proposed regarding this respect, such as the Leave One out 
Cross Validation (LOOCV), Jackknife, bootstrapping, etc. All these 
methodologies are based on the use of a unique dataset, which 
is generally split into two parts: one for learning and the other 
for confirming. However, the limitation of these methods is that 
they are based on data collected bearing similar conditions. The 
generalizability and transferability of these developed LSS to 
another setting remains an open problem [9,16,18]. This is what 
we addressed in the current paper. In fact, there exist two main 
concerns: 1) how to facilitate the selection of the best LSS; 2) how 
to inform the associated risk for their extended use. To address 
these two points, we proposed here a hybrid approach that takes 
advantage of both R-LSS and B-LSS and can be used to evaluate 
the reliability of an LSS. Through a simulation approach and 
exemplified by a drug model, we here introduced the concept of 
LSS robustness and success rate. This enabled us to quickly identify 
a best LSS and quantitatively document its associated risk when 
the intent is to use it elsewhere. Since the variability is the major 
factor influencing the prediction capacity of LSS, we also studied 
the impact of different levels of BSV and RV on this prediction 
and found that the ratio of BSV and RV is a determinant factor. 
For illustration, we have chosen a relatively simple Pop-PK model 
with some modifications of the reported variability in order to 
easy our calculations. Doing so, we were able to quickly identify 
the problems and find the solutions. However, the proposed 
method can be easily adapted to more realistic situations and 
the developed procedure can be implemented within home 
developed software for its routine use in LSS development.
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